Исследование хромосом методом FISH
FISH – один из удивительнейших «инструментов» молекулярной биологии XXI века. В преимплантационной диагностике исследовательская техника FISH применяется для выявления хромосомных аномалий или нарушений парности хромосом в клетках эмбриона, только что полученного методом экстракорпорального оплодотворения (ЭКО). Если аномалий или признаков анеуплоидии (нарушения парности, нехватки хромосомных пар) не обнаружено, то «искусственный» эмбрион признается жизнеспособным. Его можно имплантировать в матку будущей матери.
FISH позволяет также проследить половые признаки в наборе хромосом эмбриона. Это дает возможность определить пол будущего ребенка еще до фактического наступления беременности (если считать ее началом имплантацию внетелесно зачатого эмбриона в матку).
Что такое FISH?
Аббревиатура расшифровывается так: Fluoreszenz-in-situ-Hybridisierung, или флюоресцирующая гибридизация in-situ. Расшифровка, скорей всего, ничего не говорит несведущему читателю. Поэтому разберем сложное понятие по частям, оставив недопереведенное «in-situ» напоследок.
Гибридизация
В молекулярной биологии у этого термина совершенно особое значение, не имеющее ничего общего со скрещиванием видов в «обычной» биологии.
Гибридизация – это молекулярно-генетический прием, применяемый для оценки состояния ДНК и РНК исследуемых клеток. Он основан на соединении отдельных цепочек нуклеиновых кислот в единую молекулу. Таким образом проверяется комплементарность (взаимное соответствие) молекул или их фрагментов друг другу. При полной комплементарности цепочки легко и быстро объединяются в общую молекулу. Медленное объединение говорит о недостаточной комплементарности. Некомплементарность цепочек как раз и обусловлена хромосомными аномалиями (нарушениями порядка расположения хромосом на тех или иных участках), непарностью хромосом или отсутствием некоторых пар.
«Инструментом» для измерения комплементарности является температура, при которой цепочки ДНК гибридизируются в общую молекулу. Для этого требуется сначала нагреть препарат нуклеиновой кислоты, а затем, смешав его с другим нагретым препаратом, охладить. При нагреве водородные связи между цепочками ДНК или РНК исчезают, образуются одноцепочечные фрагменты молекул. Смешанные препараты двух ДНК или РНК (или ДНК – РНК) охлаждаются. При охлаждении водородные связи между комплементарными основаниями быстро восстанавливаются, образуется единая, гибридная молекула ДНК (РНК или ДНК – РНК). При недостатке комплементарности процесс идет дольше, некомплементарные фрагменты остаются неприсоединенными. Следовательно, чем выше температура гибридизации, тем гармоничней и правильней хромосомные строения клеток. Чем ниже температура, тем больше аномалий в хромосомах. На основе анализа некомплементарных остатков можно установить конкретные аномалии или участки анеуплоидии.
Флюоресцентная маркировка
Для анализа комплементарности гибридизирующей молекулы ДНК (или РНК) применяются особые генетические зонды (или ДНК-зонды), которые, конечно же, тоже имеют мало общего со своими «тезками», используемыми, например, в хирургии.
Генетические зонды это синтезированные и специально помеченные одноцепочечные ДНК (реже РНК) с заранее установленными свойствами комплементарности. При гибридизации они сливаются с определенными генетическими фрагментами, подтверждая таким образом их комплементарность. Расположение зондов в гибридизированной молекуле свидетельствует о нормальном или дефектном строении первоначального хромосомного материала, из которого собрано это «искусственное сооружение».
Генетические зонды помечают, в частности, светящимися (флюоресцирующими) веществами, что делает их заметными под объективом специального флюоресцентного микроскопа.
Применение различных красителей для нескольких зондов позволяет производить одновременный анализ различных генетических структур, например, выявлять участки хромосом с двумя наложенными друг на друга генами и прочие аномалии.
В настоящее время при проведении единого анализа генетические зонды метят пятью-шестью различными красителями, иногда даже семью.
In-situ значит «у себя дома»
Первоначальная техника гибридизации была громоздкой. Извлеченные ДНК денатурировались в особых термобуферах, смешивались в центрифуге с другими денатурированными фрагментами. Гибридизация также проводилась лабораторно, «в химической посуде».
Современная техника позволяет проводить анализы in-situ, то есть «на месте», «у себя дома», в первоначальных генетических структурах, а не в лабораторно изготовленных препаратах. Объектами исследования стали сами ядра клеток (извлеченных при биопсии полярных телец, бластомеров, поверхностных клеток бластоцисты).
Наблюдение за генетическим материалом прямо в ядрах клеток ускоряет процесс, делает его более «чистым», свободным от внешних влияний и повреждений, которые не исключены при изготовлении лабораторных препаратов.
Существуют, однако, и проблемы, указывающие на непреодолимые границы данного метода. Единой гибридизацией невозможно «охватить» весь набор хромосом в клетках. Необходимы обычно две-три последовательные гибридизации, позволяющие исследовать 12-15 хромосомных пар (а их у человека 23). Способность к дальнейшей гибридизации у цепочек ДНК после каждой их регибридизации постепенно снижается. Это не позволяет проводить гибридизацию «сколько угодно раз», для исчерпывающего анализа одного и того же генетического материала.